Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
EMEA: +44 0207 139 1600
Abstract
This article develops a methodology to combine fast and slow time-series momentum signals using machine learning techniques based on market volatility. Starting with the US equity market, the authors find that the performance of a time-series momentum strategy is determined by both its responsiveness and the market volatility regime, among other factors. A decision tree gives a simple and insightful way to determine the threshold in characterizing low- and high-volatility regimes. A slow time-series momentum strategy tends to outperform a fast time-series momentum strategy when market volatility is low. The opposite tends to occur when volatility is high. This pattern of relative performance can be attributed to market-timing alpha and exists in most global equity markets, including both developed and emerging markets.
- © 2021 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600