Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
EMEA: +44 0207 139 1600
Abstract
Investors have long relied on scenario analysis as an alternative to mean–variance analysis to help them construct portfolios. Even though mean–variance analysis accounts for all potential scenarios, many investors find it difficult to implement because it requires them to specify statistical features of asset classes that are often unintuitive and difficult to estimate. Scenario analysis, by contrast, requires only that investors specify a small set of potential outcomes as projections of economic variables and assign probabilities to their occurrence. It is, therefore, more intuitive than mean–variance analysis, but it is highly subjective. In this article, the authors propose to replace the subjective elements of scenario analysis with a robust statistical process. They use a multivariate measure of statistical distance to estimate probabilities of prospective scenarios. Next, they construct portfolios that maximize utility for investors with different risk preferences. Last, the authors introduce a procedure for minimally modifying scenarios to render them consistent with prespecified views about their probabilities of occurrence.
TOPICS: Portfolio theory, portfolio construction
Key Findings
• The authors use a multivariate measure of statistical distance to estimate probabilities of prospective scenarios.
• They construct portfolios that maximize utility for investors with different risk preferences.
• The authors introduce a procedure for minimally modifying scenarios to render them consistent with one’s prespecified views about their probabilities of occurrence.
- © 2020 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600