Click to login and read the full article.
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
EMEA: +44 0207 139 1600
Abstract
Hedge fund replication has become a cottage industry in investing. Among the most popular hedge fund replication frameworks are factor models based on ordinary least squares (OLS) regression, a development that is no doubt due to its simplicity and familiarity among investment practitioners. Despite their widespread use, the OLS regression-based factor models that form the basis for many hedge fund replication programs are often overfitted to a single sample, severely undercutting their predictive effectiveness. As a remedy to the latter shortcoming, in this article the authors apply the regularization method known as “ridge regression” to the replication of hedge fund strategies. Ridge regression works by formally imbuing a regression with additional bias in exchange for a reduction in the variance between training and test samples. Using a simple yet robust methodology, the authors show how to dynamically calibrate the predictively optimal level of bias without significantly reducing the backward-looking explanatory power of a given model. In doing so, the authors demonstrate that ridge regression can help produce generalizable models that are useful in both the ex post risk analysis and ex ante replication of hedge fund strategies.
TOPICS: Factor-based models, long-term/retirement investing, security analysis and valuation
- © 2019 Pageant Media Ltd
Don’t have access? Click here to request a demo
Alternatively, Call a member of the team to discuss membership options
US and Overseas: +1 646-931-9045
UK: 0207 139 1600